
Table II. Dilation Constants of Some Binary 
Systems 

System 

Methane(2)-propane( 1 ) 

Methane(2)-n.pentane( 1 ) 

Propane(2)-n-pentane( 1 ) 

Methane(2)-ethane( 1 ) 

Ethane(2)-propane( 1) 

T,O R 

407.7 
499.7 
559.7 
619.7 

559.7 
619.7 
679.7 
739.7 

679.7 
739.7 
799.7 

359.7 
409.7 
459.7 
509.7 

559.7 
599.7 
619.7 
639.7 

'7'(1) 

0.3\ 
1.46 
4.12 

28.35 

1.19 
1.62 
2.25 
8.39 

0.27 
1.23 

26.24 

0.90 
1.29 
3.06 

27.10 

1.30 
4.41 

12.28 
43.54 

Table III. Henry's Constants of Some Solutes 
in Solvents 

H ~,;?l 
System T, o R psia 

Methane(2)-ethane( 1 ) 359.7 690 
409.7 1029 
459.7 1330 
509.7 1500 

Methane(2)-propane(1 ) 359.7 870 
409.7 1360 
459.7 1800 
491.7 2044 
509.7 2130 
559.7 2141 
619.7 1844 

Methane(2)-n-pentane(1 ) 559.7 2821 
619.7 3185 
679.9 3256 
739.7 2943 

Ethane(2)-propane( 1 ) 559.7 449 
579.7 503 
599.7 573 
619.7 616 
639.7 631 

Propane(2)-n-pentane( 1 ) 619.7 289 
679.7 447 
739.7 610 
799.7 750 
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function of the mole fraction, especially in the vicinity 
of the critical composition. The liquid solution dilates 
as X2 rises, and van Laar's model must be modified to 
take this effect into account. 

For practical reasons (since experimental data are 
usually not plentiful), it is desirable to derive equations 
for the constant-pressure activity coefficients which 
contain no more than two parameters. Because of this 
limitation, we assume that whereas q1 and q2 depend on 
composition, their ratio does not. Since the van Laar 
treatment is a two-body (quadratic) theory, we assume 
that q1 and q2 are given by a quadratic function of the 
effective volume fraction: 

q1 = ve.[l + 1/2(,)ch
2

] 

q2 = ve,[l + 1/2(,)cf> 22] 

(30) 

(31) 

(From Equations 30 and 31, it follows that the volume fraction 
<l>i is given by <l>, = XiV • .!}; , XiVc .• ) 

3D 'S I 
In Equations ~ and we have arbitrarily used 

the pure-component critical volumes as our measure 
of the molecular cross sections at infinite dilution, when 
cf>2 = O. Some other constant (for example, van der 
Waals b or Leonard-Jones 0- 3) could just as easily be 
used. The dilation constant 112(1) is a measure of how 
effectively the light component dilates (swells) the liquid 
solution. 

When Equations 30 and 31 are substituted into Equa­
tion 26, the pressure-independent activity coefficients 
are 

where 

In 'Yl(P') = Acf>22 + Bcf>24 

A (ve
. ) (cf>22 - 2 cf>2) + 

VOl 

A = CX22(\ )V,' 

B == 3 1/2(\ )Q!22(\ )V,' 

(32) 

(34) 

(35) 

Equations 32 and 33 are the desired two-parameter 
equations. These equations provide accurate represen­
tation of the constant-pressure activity coefficients of 
nonpolar binary mixtures from the dilute region up to 
the critical composition. To illustrate, Figures 3 and 4 
present typical results of data reduction for two binary 
systems, propane-methane (30) and carbon dioxide­
nitrogen (27). 

Self-interaction constants, dilation constants, and 
Henry's constants for some binary systems are given in 
Tables I, II, and III. The magnitude of the dilation 
constant shows a consistent and meaningful variation 
with respect to the temperature and the properties of the 
constituent components; the dilation constants are 
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Figure 3. Activity coefficients for the propane (2)-methane(3) 
system at 700° F. 

Figure 4. Activity coefficients for the carbon dioxide(7)-nitrogen(2) 
system at 32° F. 
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larger for those systems at temperatures approaching the 
critical temperature of the heavy component (component 
1); also, they are larger for those systems in which the 
light component is highly supercritical. This behavior 
of dilation constants is in agreement with their physical 
significance in the dilated van Laar model-i.e., the 
liquid phase is swelled or dilated most when the sub­
critical heavy component itself is near its critical tem­
perature, or when the light component is far above its 
critical temperature. Under these conditions the liquid 
molar volume increases sharply with dissolved gas. 

Plots of In 1]1/2 vs. l/T show a similar shape for all 
systems. It has been possible to unify all the curves into 
a single reduced plot, as shown in Figure 5. The curve 
can be represented by 

In (1]N*)1/2 = -30.2925 + 39.1396 (T*/T) 

17.2182 (T*/T)2 + 2.81464 (T*/T)3 -

2.78571/(T*/T) - 5.26736 In (T*/T - 0.9) (36) 

where 1]* is a constant characteristic of the light com­
ponent and T* is a constant characteristic of the binary 
system. Some values of 1]* and T* are given in Figure 
5. 

Mixtures of condensable components. At tem­
peratures sufficiently lower than the critical tempera­
ture of the light component (component 2), the dilation 
constant 1] obtained from data reduction becomes so 
small that it can be effectively equated to zero. Under 
these conditions, the constant-pressure activity co­
efficients of both components can be correlated with only 
one parameter, a. We found empirically that this 
occurs for T R. less than 0.93. Therefore, components 
with a reduced temperature smaller than 0.93 are 
treated as heavy components (solvent), and those with 
T R larger than 0.93 are treated as light components 
(solute). Systems for which both TRI and T R• are 
smaller than 0.93 are correlated with 1] = 0 and only 
one parameter, a. System& for which the critical tem­
peratures of the two components are very close (such as 
acetylene-ethane) are also analyzed with only one 
parameter, a, even though T R • is larger than 0.93; 
the terms "heavy" and "light" component lose their 
conventional meaning for such systems. In fact, it 
sometimes happens that the component with the higher 
critical temperature ("heavy") may actually have a 
higher vapor pressure and critical pressure than the 
component with the lower critical temperature ("light"). 

For those systems where both components can exist in 
the pure liquid state, it is not necessary to use the 
unsymmetric convention for normalization of activity 
coefficients. Instead, such a system can be analyzed 
with a one-parameter, symmetric-convention expression 
for the excess Gibbs energy: 
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